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A new approach to predicting the biological activity of small molecule pharmaceutics is
demonstrated. Structural features of medicinal chemistry building blocks are used as 2-D
molecular descriptors. These descriptors include predefined structural features and macro-
structures obtained from a supervised process in which features in the core library are
reassembled to provide larger features that strongly differentiate the desired biological response
variable. Chemical features derived in this manner can serve as predictor variables for diverse
modeling algorithms, and application using partial least squares techniques is demonstrated
here. Models are presented for inhibition by benzofuran and benzothiophene biphenyl analogues
of protein tyrosine phosphatase 1B (PTP1B), a target for insulin-resistant disease states. Results
are compared to models for PTP1B inhibitors available in the literature based on CoMFA-
related techniques and 3-D molecular descriptors.

Introduction

Designing small molecules for desired pharmacologi-
cal activity requires identification of compound classes
based on structural features and methods to estimate
the activities from such hypotheses. The ability to
accurately predict biological responses from structural
features of a chemical compound is one of the most
important aspects in the drug discovery and optimiza-
tion processes. QSAR model development based on
molecular descriptors has been extensively studied.1-3

Most QSAR descriptors are derived either from energet-
ics based on quantum mechanical or semiempirical
calculations or from topological indices. Three-dimen-
sional molecular descriptors are fundamental and give
physical meaning to models; however, quantitative
interpretation of their contributions is generally not
straightforward and is often computationally prohibitive
for large structure sets. Two-dimensional descriptors
have been used in similarity searching and structure-
based clustering for grouping similar compounds.4,5 Yet,
despite their computational advantages, 2-D structural
features have not been widely reported for the quantita-
tive modeling of biological activities.

This paper describes a new methodology in which
structural features of medicinal chemistry building
blocks are used as a basis for 2-D molecular descriptors.
In our recent paper, a new method to find discriminating
structural features was presented. This methodology
enables the building of predictive models based on
structural hypotheses.6 These molecular descriptors
include predefined structural features and predictive
macrostructures. The macrostructures are reassembled
from the original predefined features, guided by the

response variables to differentiate structures based on
biological responses. These predictive features are op-
timized such that compounds containing the macro-
structures tend to impart higher or lower activity
compared to the mean of the training set. The predictive
accuracy of these macrostructures can be assessed when
the model is evaluated.

Chemical features derived in this manner can serve
as predictor variables for many diverse modeling algo-
rithms including multivariate least squares regression,
principal component regression (PCR), k nearest neigh-
bors (kNN), partial least squares (PLS) techniques, and
neural network approaches. Although most of the fitting
algorithms provide methods to reduce the high dimen-
sionality of chemical feature space, preselection of
descriptors is still key to building useful predictive
models. Genetic algorithms, simulated annealing, re-
cursive partitioning, and principal component analysis
(PCA) are popular methods for descriptor selection. In
this paper, we show that macrostructure assemblies
(MSAs) are an intuitive and chemically relevant ap-
proach for reducing the dimensionality of the feature
space. In principal component analysis, correlations and
redundancy between features are removed by maximiz-
ing the variance captured by latent variables. The
resulting principal components are linear combinations
of the original predictors (structural features), which
represent individual medicinal chemistry building blocks.
This mathematical treatment is conceptually analogous
to the process of reassembling the macrostructures from
the individual features. In comparison to principal
components, MSAs offer two advantages: (1) the con-
nectivity of individual features is intrinsically included
in structures; (2) the reassembly process is supervised
by the selected biological response. Since MSAs repre-
sent actual physical structures, they are easier to
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understand than the abstract latent variables generated
by principal component analysis.

Examples illustrated in this paper are inhibitor
models of benzofuran and benzothiophene biphenyl/
naphthalene analogues for protein tyrosine phosphatase
1B (PTP1B), a novel target for insulin-resistant disease
states.7 Models for PTP1B inhibitors available in the
literature apply CoMFA-related techniques,8,9 docking
simulations,9 or other 3-D QSAR descriptors.10 Results
from these prior studies are used for comparisons and
validation of the methodology presented in this paper.
Advantages of using structural features as descriptors
to intuitively understand chemical inference over more
traditional QSAR methods are articulated. The impor-
tance of this chemical inference is emphasized through-
out the model building process. The goal of the model
building exercise in discovery and optimization is
ultimately to be able to design compounds having the
desired activities or properties. The chemical inference
needed during the structure design process requires the
intuitive connection of models back to the structural
building blocks used in the model.

The objectives of this paper are to (1) confirm the
importance of marcrostructures in a molecular descrip-
tor set for predicting activities; (2) predict the pIC50
values of the 26 compound set used in the CoMFA
modeling study by Murthy;8 and (3) accurately predict
the activity classes of a 19-compound set discussed by
Malamas et al.11,12 but for which pIC50 values were not
reported.

Methods
The overall modeling strategy includes the following steps:

(1) diagnose the data set; (2) assemble macrostructures with
predictive accuracy; (3) select descriptorsspreselection of
structural features plus addition of physicochemical properties;
(4) employ appropriate model building algorithms; (5) evaluate
the model with chemical inference; and (6) rebuild the model
by refining the feature set.

Diagnosis of PTP1B Dataset. Prior to model building,
data sets were diagnosed for data distribution and structural
similarities between the training and test sets. The same
structure set (118 compounds) described in Cross et al.6 was
used to illustrate this modeling methodology. The training (92
compounds) and test (26 compounds) sets were partitioned as
described by Murthy et al.8 These data sets were used to build
both quantitative pIC50 (-log IC50) and classification models
for PTP1B inhibition activity. For the binary classification
model, each compound was classified as active or inactive.
Compounds having pIC50 values lower than the average of the
118 compounds (mean ) 0.70) were classified as inactive,
resulting in a data set with equal numbers of actives and
inactives. A set of 19 additional compounds described by
Malamas et al., but whose IC50 values were not reported in
that paper, was used to further challenge models built by this
approach. Both test sets (26-test and 19-unknown) were not
used in the model training process. For each of these 19
compounds, Malamas reports a percent inhibition measured
at one concentration; concentrations ranging from 0.1 to 2.5
µM are listed for compounds in this subset. For the analysis
presented here, compounds whose reported percent inhibition
was lower than 50% at a concentration higher than 0.199 µΜ
were classified as inactive, since the average IC50 value of the
118 set was 0.199 µΜ (pIC50 ) 0.702).

Structural similarities between compounds in the training
and test sets are assessed by comparing compound finger-
prints. The fingerprint for each compound is represented as a
vector of binary (1/0) values, each element indicating whether
or not the compound has a specific chemical feature. Structural
features were selected from a library of 27,000 medicinal

chemistry building blocks and the reassembled macrostruc-
tures.13 For each compound in the test set, a mean correlation
within the test set is calculated by averaging all pairwise
Tanimoto coefficients. Similarly, pairwise Tanimoto coef-
ficients between each test set compound against all compounds
in the training set are calculated and then averaged. The
within and between Tanimoto coefficients are then correlated.
If the test and training sets are structurally similar, the
correlations within and between them should be approximately
the same. The ratio of the within/between average correlation
provides a quantitative measure: the closer this ratio is to
unity, the more structurally similar the test set is to the
training set.

Macrostructure Assembly. The key step in the model
building process described in this paper is the generation of
MSAs, chemical scaffolds constructed by combining smaller
2-dimensional molecular descriptors. Although a brief descrip-
tion of this process is presented here, the detailed process for
generating macrostructures for the PTP1B set has been
reported in a previous paper.6 The use of 2-D chemical
fragments as descriptor variables in QSAR models is well-
established and supported by extensive prior work. In this
approach each compound is viewed as a combination of
chemical fragments. The MSA method takes this approach a
step further by dynamically building new and larger fragments
in a supervised manner; this process is dynamic in the sense
that MSA construction is an integral part of the data analysis
process, as opposed to the traditional approach in which
fragments are selected from a preexisting library of features.
The MSA method offers two very important advantages: (1)
MSAs are generally larger than the 2-D descriptors available
in fragment libraries and therefore properly describe con-
nectivity within molecules to a greater extent. (2) Models that
include MSAs usually require significantly fewer total descrip-
tors than models based solely on smaller fragments. In this
light, the MSA method can be viewed as a chemically intel-
ligent dimension reduction technique both simplifying and
generalizing the model.

Preselection of Descriptors. Even for a relatively small
number of compounds, the total number of predictor variables
(basic chemical features, MSAs, physical properties) can be
very large. An important first step is to select a subset of
descriptors that will be most useful in the model building
process. Preselection began by removing features present in
only one compound or in every compound since, even if these
features happen to be important, the compound set is not
sufficiently diverse to measure their influence with any
statistical certainty. These initial numbers of features can be
further reduced before application of model building algo-
rithms by simple significance tests such as t2-tests (when
response variable is continuous) and ø2-tests (when response
is categorical). This type of feature preselection, commonly
employed in most supervised methods, was used here for pIC50

(t2-test) and activity classification (ø2-test) models.
Relevant physicochemical properties or QSAR descriptors

can be added after preselection of features. In this study, the
following molecular properties, calculated within Leadscope
software, were added: aLogP,14 polar surface area,15 parent
molecular weight, parent atom count, number of hydrogen
bond acceptors and donors, number of rotatable bonds, and
Lipinski scores.16 The values for these eight properties for
the full set of 137 compounds, and an sd-file of structures,
are available at http://www.leadscope.com/downloads/data/
PTP1B(137)_JMedChem.zip.

Model Building. The nonlinear iterative partial least
squares (PLS) method was used to develop a pIC50 model. For
activity classification model, partial logistic regression (PLR)
was employed.17 PLS involves the stepwise extraction of factors
(linear combinations of predictor variables) that are highly
correlated with a dependent response variable. Each factor is
orthogonal to all others and has an associated vector of weights
that describe the contribution of each independent variable.
The weight vectors are similar to eigenvectors in PCA.
Multiplication of the original predictor variables by the weight
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vector yields the component scores for a particular factor. In
conventional PLS, after extracting a desired number of factors,
predicted values of the continuous response variable are
calculated in a stepwise manner.18 In PLR, the first step is
the same as above: the scores matrix is obtained by extracting
a desired number of factors, treating the dependent variable
as if it were continuous. For the prediction step, the stepwise
process for constructing continuous response variables in PLS
is no longer valid; instead, logistic regression is then performed
using the scores matrix as the independent variables to model
the nominal response data.

The parameters used in the PLS and PLR methods include
the number of structural features preselected for use as
predictor variables and the number of factors extracted during
the model building process. Goodness of fit is compared using
R2 and RMSE (root-mean-square error). Leave-one-out cross-
validation of the training set was used to determine the
optimal number of preselected features and number of factors.
Using these parameters, the models were then applied to
predict activities of the test sets. Since the test sets were not
used at any point during the training process, this approach
provides a true test of the predictive ability of a model.

Results and Discussion

PTP1B inhibitors are negative regulators in insulin
and leptin signaling cascades and hence play a role as
potential agents for type II diabetes and obesity.19-22

Compound classes reported in the literature include
naphthoic acid19 and sulfonamide20 analogues of phospho-
nodifluoromethyl phenylalanines, and oxalyl-aryl-amino
benzoic acid21 and salicylate-based ligands.22 Recent
studies have suggested that apparent activities of some
compounds may instead be explained by nonspecific
mechanisms such as sequestration of protein by hydro-
phobic aggregates.23 We selected the benzothiophenes
and furan analogues presented by Malamas since the
number and variety of the local neighbors are good from
a modeling standpoint, and also because this allows
comparison of this new modeling methodology with
results from 3-D QSAR models that have been published
based on this same data set. Structural classification
of the data set and assessment of structural similarity
of the training and test sets are first addressed prior to
modeling the activities of the PTP1B inhibitors. The six
steps described in the Methods section is followed for
discussion.

Step 1. Diagnosis of Data Sets. Analyzing the
dataset for structural diversity, similarity, and distribu-
tion is the first step in the model building process. The
distribution of pIC50 values for the 92-training and 26-
test sets is illustrated in Figure 1. The 26-test set
contains a higher proportion of active compounds, as
indicated by the shift in mean: the means and standard
deviations of the 92-training and 26-test sets are 0.65
( 0.55 and 0.89 ( 0.59, respectively. Applying the t-test
to compare these two sets, the mean pIC50 value of the
26-test set was significantly higher than that of the
training set at the 95% confidence level (p-value of 0.026
in a one-tail test). The mean of a truly random test set
should be approximately equal to that of the training
set. In this paper, we are using the same test set
identified by Murthy et al.8 so that an exact comparison
of models can be made. Ensuring that the training set
is representative of the test set is obviously an impor-
tant criterion when selecting a single test set. This issue
was addressed by running rigorous cross-validation
during the model building process.

Measuring the structural similarity between training
and test sets is also a critical preliminary step for any
modeling approach. It is imperative that the chemical
space of the test set lies within that of the training set.
This paper presents three independent methods to
diagnose the appropriate structural similarities between
the test and training sets: compound class grouping,
Sammon map, and structure similarity correlation.

According to chemical class grouping shown in Table
1, the 26-test set contains a distribution of compound
classes similar to that of the 92-training set, with few
exceptions. The 26-test set contains a higher frequency
of benzofurans and sulfonyl groups than the 92-training
set, while the number of compounds with pyridine and
oxazole structures is less. The 19-unknown set turns out
to be much less similar to the training set than the 26-
test set. The 19 set contains the benzimidazole class,
which was not part of the 92-training or 26-test sets. A
greater proportion of compounds in the 19-unknown set
contain phenol, oxazole, and benzofurans. This set also
has no compounds with sulfonyl groups and much lower
benzothiophene content than either the 92-training or
26-test sets.

Figure 1. Histogram of pIC50 distribution. Compounds with
pIC50 values lower than the mean of the training set were
considered inactive. A significantly higher percentages of
actives are observed in the 26-test set.

Table 1. Examples of Chemical Class Groupings of the Data
Set
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The Sammon map24 in Figure 2 illustrates a 2-D
projection of the structural feature space of the 92-
training, 26-test, and 19-unknown compound sets. Sam-
mon maps provide only a semiquantitative measure of
similarity and must be interpreted with caution since
they are highly distorted due to projection of high
dimensional data to only two or three dimensions for
visualization. The 92-training and 26-test sets appear
to be quite similar; there are only a small number of
test set compounds that have no close neighbors in the
training set. On the other hand, the 19-unknown set
appears to have somewhat more dissimilar features
from the other 118 compounds.

A quantitative similarity metric to estimate structural
correlation between the test and training sets was
calculated for each compound in the 26-test and 19-
unknown sets against all compounds in the 92-training
set. Ideally, the within (test-test) and between (test-
training) average structural feature correlations should
be approximately equal. Therefore, the extent to which
points lie along the diagonal in Figure 3 indicates how
well a test set is represented structurally in the training
set. The compounds in 92-training and 26-test sets are
correlated at 97%, whereas the correlation is only 68%
between the 19-unknown and 92-training sets.

In summary, the analyses presented in Table 1 and
Figures 2 and 3 provide valid methods to assess the
similarity of the chemical space between training and

test sets. All three methods, chemical class grouping,
Sammon map, and similarity correlations of the data
sets, independently confirmed that the 26-test set is
more similar to the 92-training set than the 19-unknown
set. For these datasets we note that the similarities
between test sets and the training set are not optimal,
a fact that will ultimately limit the predictive accuracy
of any model. As explained earlier, the reason for
choosing these particular test sets was to allow com-
parison of the model presented here with results from
prior studies. This is a common problem in this area
and points out the need for a more systematic approach
to evaluating informatics models, an approach in which
models are judged based on their performance averaged
over a large number of randomly selected test sets
rather than in-depth analysis of a single test set. The
issue of domain of applicability will be addressed in a
subsequent paper.

Step 2. Assembly of Macrostructures. The data
set used for modeling inhibition of PTP1B produced a
total of 509 medicinal chemistry building blocks to
describe 92 test compounds. On the basis of the original
structural features, 71 macrostructures that discrimi-
nate the activity were assembled, providing a combined
total of 580 features. Examples of MSAs used in
modeling are presented in Chart 1.

Step 3. Preselection of Features. For the pIC50
model, a subset of features was then selected based on
a t-statistic calculated for each feature, comparing the
mean pIC50 for compounds having a particular feature
with the mean for those without. Of the top 150
influential features, 41 were MSAs. Chart 1 lists macro-
structures sorted in order of the t-statistic as well as a
summary of compound groupings in training and test
sets. The percentage of compounds classified by the
predictive MSAs in the test and training sets is quite
similar, which is another good indication of the struc-
tural proximity of the two sets. After preselection of
structural features, calculated molecular properties
described in the Methods section can be added. The final
predictors, therefore, consist of both binary and continu-
ous variables.

Step 4. Model Building. The nonlinear partial least
squares (PLS) method was then used to model the
reduced dataset. PLS further reduces the dimensionality
of the features by extracting factors that are linear
combinations of the input variables. Two parameters,
the number of preselected features and the number of
PLS factors to be extracted, were optimized by leave-
one-out cross-validation to avoid overtraining and to
maximize the prediction capability. The mean R2 (aver-
aged over 92 runs) for training sets and Q2 for the leave-
one-out results are reported in Table 2, which also lists
the relevant modeling parameters: types of predictors
(all structural features vs MSAs), number of preselected
features, and the number of PLS factors. Only settings
that yielded the best cross-validation are reported in
Table 2. Figure 4 presents a detailed analysis of the
effects of the number of preselected structural features
and number of PLS factors. This figure clearly il-
lustrates why preselecting a subset of differentiating
features is necessary. As expected, essentially perfect
fits (R2 ) 1) of the training set can be obtained using
all features and a high number of PLS factors, but the

Figure 2. A 2-D Sammon map projection. The chemical
feature space of the three datasets (2 92-training, 0 26-test
set, O 19-unknown set) projected in two dimensions. Axis
scales are Tanimoto similarity.

Figure 3. Structural correlations of the 19-test (O) and 26-
test (2) sets with the 92-training set.
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Chart 1. Examples of MSAs Used in the Modela

a The IDs of the macrostructures are numbered in decreasing order of t values. Average PLS weights are calculated from the weights
of the PLS factors for each MSA. (Only the top 10% of the structural features were considered.) The mean of the absolute average PLS
weights across all selected 150 structural features was 0.074. The mean (92) and mean (26) represent the average pIC50 values for the
92-training and 26-test datasets, respectively.
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cross-validation Q2 and PRESS (prediction error sum
of squares) statistic are very low, indicating that such
models are overtrained and therefore not providing
meaningful information. Overall, higher cross-validation
Q2 and PRESS values are observed for a relatively low
number of PLS factors (<10) and with 100-200 pre-
selected features. When all 580 structural features were
used without preselection, models overtrain such that
the cross-validation Q2 values decrease rapidly with
increasing number of PLS factors greater than 4.

This combination of preselection and the use of
minimum number of PLS factors is important not only
for model robustness but also for meaningful chemical
inference. Finding structural features significantly im-
pacting the models by decoding PLS factors becomes
more intuitive with a small number of factors. The use
of macrostructures alone as structural features also
gave reliable models for this local neighborhood of
benzothiophene and benzofuran biphenyl/naphthalene
analogues. All 71 MSAs were included when building
models with structural features made of only MSAs.
Inclusion of eight molecular properties, including aLogP,
enhanced the training and cross-validation by 0.03 log
unit in the root-mean-square error.

Using the parameters optimized by cross-validations,
the influence of each of the molecular descriptors on the

model’s ability to predict the 26-test set was investi-
gated. Various models, using base structural features,
MSAs, calculated properties, and combinations of these
descriptor sets, are compared in Table 3. Overall, the
results clearly demonstrate the usefulness of the struc-
tural features for modeling the potency of biphenyl and
naphthalene analogues of benzothiophenes and benzo-
furans for PTP1B inhibitors. These results compare very
favorably with results from Murthy’s CoMFA models.8

MSAs alone work remarkably well as predictors for
both cross-validation of the training set and modeling
the true test set. Although including preselected base
features as well as the eight physical properties im-
proves prediction, MSA-only models are very helpful for
establishing chemical inference at the evaluation stage.
The MSAs allow medicinal chemists to evaluate predic-
tion models by chemical inference without resorting to
the more abstract mathematical treatment of structural
features as in the case of principal component analysis
or genetic algorithms for reducing high dimensionality
and redundancy.

The inclusion of aLogP substantially enhanced the
predictive accuracy of an earlier CoMFA study.8 Several
other 3-D QSAR studies reported using a similar data
set containing analogues of benzothiophene and benzo-
furan biphenyls.9-12 Descriptors such as hydrogen bond-
ing and CPSA (charged polar surface area) improved
model accuracy, whereas HOMO descriptors were mar-
ginal at best.8,10 In this study, the properties aLogP,
parent molecular weight, and hydrogen bond acceptors

Figure 4. Determination of the number of PLS factors and preselected features to be used in model. Surface plots of the Q2

correlation coefficient and PRESS (prediction error sum of squares) summarize results for leave-one-out cross-validation on the
92-training set. Plot on right shows the mean training set R2 values for each cross-validation run. Shading is proportional to
correlation coefficient for Q2 and R2 (darker indicates higher correlation) and inversely proportional to PRESS for a given set of
parameter values.

Table 2. Parameter Optimization for Cross-Validation

training
set

leave-one-
out CV

predictor types Ga Fb R2 RMSE Q2 RMSE

all: base features + 580 (all used) 3 0.77 0.27 0.57 0.37
MSA + 200 5 0.83 0.23 0.68 0.31
8 properties 150 4 0.81 0.24 0.70 0.30

150 12 0.89 0.18 0.62 0.34
150 20 0.93 0.15 0.57 0.39
100 6 0.78 0.26 0.66 0.32
100 19 0.91 0.17 0.71 0.31
50 12 0.83 0.23 0.71 0.30
50 5 0.76 0.28 0.68 0.31

base features only 150 4 0.71 0.30 0.56 0.37
base features +

8 properties
150 4 0.76 0.27 0.62 0.34

MSA only 71 (all MSA) 5 0.80 0.25 0.61 0.35
MSA + 8 properties 71 (all MSA) 5 0.84 0.22 0.68 0.32
8 properties alone 8 1 0.48 0.40 0.47 0.40

a Number of preselected structural features. b Number of PLS
factors.

Table 3. Predictive Power of the Molecular Descriptors

training set 26-test set

descriptors Ga Fb R2 RMSE Q2 Q2 RMSE

all descriptors: basic
features + MSAs +
8 properties

150 4 0.80 0.24 0.70 0.72 0.32

basic features only 150 4 0.71 0.30 0.56 0.59 0.38
basic features + MSAs 150 4 0.78 0.26 0.67 0.68 0.33
basic features +

8 properties
150 4 0.76 0.27 0.62 0.69 0.33

MSAs only 71 5 0.79 0.25 0.61 0.64 0.36
MSAs + 8 properties 71 5 0.83 0.22 0.68 0.65 0.37
8 properties only 8 1 0.48 0.40 0.47 0.66 0.37
CoMFA model A* 0.72 0.51
CoMFA model B

(with aLogP)*
0.84 0.75

a Number of preselected features. b Number of PLS factors used.
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were significant in the model; however, the effects were
not as dramatic as those observed in the CoMFA study
or other 3-D QSAR studies. MSAs may already provide
the information that LogP contributes to the model.
Although the properties-only model performed as well
as the MSA model for the 26-test set, this result is
somewhat misleading because comparison of results
using different randomly selected test sets shows that
the properties-only model in general is not nearly as
good. In both the 92-training and 26-test sets, strong
correlations between the aLogP and activities were
observed. The 26-test set used here was selected specif-
ically in order to compare with a previous CoMFA
study.8 As discussed earlier, this set contains com-
pounds whose average IC50 value is 1.8 times greater
than that of the 92-training set. This shift toward higher
activity with stronger correlation with aLogP clearly
leads to a greater dependence on aLogP in the model
for this particular test set.

Step 5. Evaluation of Model by Chemical Infer-
ence. One of the most obvious advantages of the
modeling method presented in this paper is the ability
to connect models directly to structural design. A
detailed structural evaluation of the model is now
attempted using best model for the 26-test set, which
was built using all predictors (basic features, MSAs,
physical properties) with 150 preselected features and
4 PLS factors. The actual pIC50 values are plotted
against predicted values for both 92-training and 26-
test sets in Figure 5. We discuss examples of compounds
that are predicted accurately and explain why the model
works. Equally important, we also present cases where
the model fails. Only through an iterative process of
chemical inspection and testing model hypotheses can
the prediction capability be fairly assessed. For this
discussion, Chart 1 lists the MSAs employed in this
model, including the discriminating (t-statistic) and
predictive power (PLS weights). Table 4 lists selected
structural features that were weighted highly in the
PLS model for the 26-test set.

To demonstrate chemical inference, examples of in-
active and active compounds that are accurately and
incorrectly predicted are considered. These compounds
are listed in Chart 2. The pIC50 values for compounds
63 and 113 are predicted accurately in the 26-test set.

Compound 63 is an inactive compound whose pIC50
value was predicted correctly. Approximately one-fourth
of the structures in the training set were found to be
similar to compound 63, with pIC50 ranging from 1.367
to -0.121. The compound contains a strongly negatively
correlating feature, MSA 28, as well as several positively
correlating features such as MSA 10 and 19. MSA 28 is
a highly discriminating feature, representing the ana-
logues of 1,2-disubstituted benzofurans, whereas the
corresponding benzothiophene analogues show higher
activities. All 14 compounds containing MSA 28 in the
training set have pIC50 values lower than the average
of the training set (0.65). On the other hand, the
positively correlating feature MSA 10 appears in 19
benzofuran analogues that are above the average, while
21 of the analogues were lower. The presence of MSA
10 does not guarantee activity; however, the absence of
this feature correlates well with lower activity. In the
92-training set, all 11 compounds without this feature
are inactive. Thus, the overall prediction of pIC50 lower
than the average of the training set is reasonable.

To assess whether these discriminating features
provide predictive accuracy, it is useful to calculate the
PLS weights averaged for all 4 factors employed in this
model. PLS factor weights provide a direct measure of
the influence of a descriptor on the model. Since each
factor is a linear combination of all the structural
features plus the properties, the higher this weight the
greater impact this feature has on the model. If a
feature exhibits high t-values and above average PLS
weights, it can be considered to impart predictive
accuracy. For compound 63, the discriminating MSAs
28 and 10 give high predictive accuracy, as listed in
Table 4.

The next example is the active compound 113 (pIC50
) 1.0) that was predicted correctly. Approximately one-
fifth of the structures were found to be similar in the
training set (Chart 2). They represent the compound
classes of 2-benzylbenzothiophene biphenyl oxo-acetic
acid. Compound 113 is described by many positively
correlating features (MSA 3, 4, 9, 7, 10, 11, 20, and 19)
and contains no negatively correlating structural fea-
tures. All structures containing MSA 3 and 4 belong to
the active class (pIC50 values greater than average) in
the training set. Prediction of this compound depends

Figure 5. Comparison of actual and predicted pIC50 values for 92-training and 26-test sets. Predicted values obtained from PLS
model using all features (basic structures, MSAs, physical properties) with 150 preselected features and 4 PLS factors. Numbers
in plot on right denote compound IDs.
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heavily on MSAs 10, 13, 20, 9, and 3 as illustrated in
Table 4. They are highly discriminating, as indicated
by their t-values and PLS factor weights, whose com-
bination allows good predictive accuracy.

Chemical inference is especially important in evaluat-
ing a model in cases where predictions are not accurate.
Applying this analysis to cases in which the model fails
to predict correctly leads to understanding of the real
robustness of a model or to the possible identification
of experimental anomalies.

The pIC50 values for compounds 145 and 177 are
predicted inaccurately in the 26-test set. Compound 145
is a weakly active compound whose predicted pIC50
value (-0.324) was much lower than its actual value
(0.638). Chart 2 displays similar structures in the
training set: compound 143 with a methylene spacer
between the butylbenzofuran and the biphenylphenol
groups; and compound 146, a dibromo analogue. The
pIC50 value of 145 (0.638) is much higher than those
of both analogues (-0.076 and -0.146). The under-
predicted activity may be due to the contribution from
the biphenylphenol group since 14 of the 15 compounds
containing this feature in the training set are in-
active. Two factors, spacers between the benzofuran
and biphenyl groups and bromide substitution, are
further explored. First, the introduction of carbon
spacers, methylene or hydroxymethylene, was reported
by Malamas11 to have a small effect on activity. As listed
in Chart 2, addition of a methylene spacer to compound
52 to yield compound 143 decreases the activity, while

the same addition has the opposite effect in compounds
62 and 147. The addition of the hydroxymethylene
spacer from compound 147 to 148 results in an increase
in activity. On the basis of this observation, test
compound 145 would be expected to be more active than
143, which indeed is the case; however, addition of the
hydroxymethylene to 164 leads to lower activity in
compound 163. The effect of bromide substitution is also
not clear. In general, bromo analogues may yield higher
activity, as observed here for naphthalene analogues
162 and 163. Malamas11 pointed out that it is surprising
that compound 146, the ortho-subsituted dibromo ana-
logue, exhibited lower activity than 145. Hence, the
activity of the compound 145 cannot be explained by the
dibromo substitution.

The effects of methylene and hydroxymethylene spac-
ers and bromo substitution are therefore at best am-
biguous in attempts to explain the observed activity of
test compound 145 based on similar compounds in the
training set. All analogues in the training set belong to
the inactive class; 145 is the only compound in this
group that seems to be somewhat active. In our model,
this compound is described by MSAs 28, 27, and 29.
These structural features are strongly correlated with
lower activity in the training set; all but one of the
compounds containing MSA 29 in the training set is
inactive. Examining the structures of the analogues as
well as the differentiating macrostructures, none of the
compounds similar to 145 are active. Thus, the reported
high pIC50 for compound 145 could not be explained by

Table 4. Predictive pIC50 and Classification Models for the 26-Test Seta

predicted modelscompd
ID

exptlb

pIC50 pIC50 class (prob)c significant features in prediction

61 0.237 0.232 inactive (0.041) methane, 1-aryl-,1-phenyl-; MSA 10; MSA 13, benzene, 1-aryl-,4-hydroxy-;
thiophene, 2-benzyl-

62 -0.34 0.166 inactive (0.014) MSA 10; MSA 28; MSA 13; benzene, 1-aryl-,4-(2-oxoethoxy)-; MSA 19
63 0.357 0.348 inactive (0.037) MSA 10, MSA 28, benzene, 1-aryl-,4-phenyl-; MSA 13, MSA 19
66 0.569 0.562 inactive (0.017) methane, 1-aryl-,1-phenyl-; MSA 10; MSA 13; benzene, 1-aryl-,4-phenyl-; benzene,

1-aryl-,4-(2-oxoethoxy)-; MSA 19
68 0.495 0.562 inactive (0.017) MSA 10; MSA 13; benzene, 1-aryl-,4-phenyl-; benzene, 1-aryl-,4-(2-oxoethoxy)-; MSA 19
74 0.398 0.547 inactive (0.018) MSA 10; MSA 13; benzene, 1-aryl-,4-phenyl-; benzene, 1-aryl-,4-(2-oxoethoxy)-; MSA 19
84 0.921 0.947 active (0.98) MSA 12, MSA 10, benzene, 1-aryl-,4-phenyl-; MSA 13; MSA 20
85 1.071 1.159 active (0.98) MSA 12, MSA 10, benzene, 1-aryl-,4-phenyl-; MSA 13; MSA 20
103 1.237 1.335 active (1.0) MSA 15; MSA 16; MSA 18; MSA 12; MSA 10; MSA 13; MSA 20
106 1.284 1.406 active (1.0) methane, 1-aryl-,1-phenyl-, MSA 12, MSA 10, MSA 13, MSA 20, MSA 3
113 1 0.997 active (0.93) MSA 10; MSA 13; MSA 20; MSA 9; MSA 3
119 1.553 1.343 active (0.99) MSA 18; MSA 10; MSA 13; MSA 20; MSA 9; MSA 3
125 1.42 1.407 active (0.90) MSA 16; MSA 18; MSA 10; benzene, 1-aryl-,4-phenyl-; MSA 13
130 1.284 1.196 active (0.89) MSA 18; methane, 1-aryl-,1-phenyl-; MSA 10; benzene, 1-aryl-,4-phenyl-; MSA 13
136 1.086 0.6 inactive (0.47) methane, 1-aryl-,1-phenyl-; MSA 10; benzene, 1-aryl-,4-phenyl-; MSA 13; benzene, 1,2,4-acyc
141 1.319 1.562 active (1.0) MSA 10, MSA 13, MSA 1; MSA 12; MSA 3
145 0.638 -0.324 inactive (0.01) MSA 10: MSA 28; MSA 27; benzofuran, 3-(alkyl, acyc)-; MSA 13; benzene, 1-aryl-,4-hydroxy-
148 0.268 -0.087 inactive (0.01) MSA 10, MSA 28, MSA 27, benzofuran, 3-(alkyl, acyc)-; MSA 13; benzene,

1-aryl-,4-(2-oxoethoxy)-
159 0.886 0.74 active (0.67) MSA 360, MSA 301, MSA 227, MSA 10; benzene, 1-aryl-,4-trifluoromethyl-; oxazole, 2-aryl-
160 -0.114 0.277 inactive (0.002) MSA 28; MSA 23; MSA 27; MSA 24; naphthalene, 2-hydroxy-
171 -0.041 0.222 inactive (0.01) MSA 28; MSA 23; MSA 27; MSA 24; MSA 22; MSA 25; MSA 21
177 1.585 0.886 active (0.89) methane, 1-aryl-,1-phenyl-; 1-benzene-carboxylic acid, 2-hydroxy-; MSA 10; benzene,

1-aryl-,4-phenyl-; MSA 13
179 1.409 1.082 active (0.99) methane, 1-aryl-,1-phenyl-; 1-benzene-carboxylic acid, 2-hydroxy-; benzene,

1-hydroxy-,3-sulfonyl-; MSA 10; MSA 13
180 1.553 1.489 active (1.0) methane, 1-aryl-,1-phenyl-; 1-benzene-carboxylic acid, 2-hydroxy-; benzene,

1-hydroxy-,3-sulfonyl-; MSA 10; MSA 13
182 1.62 1.401 active (0.91) MSA 2; methane, 1-aryl-,1-phenyl-; 1-benzene-carboxylic acid, 2-hydroxy-; benzene,

1-hydroxy-,3-sulfonyl-; MSA 10
183 1.523 1.546 active (0.94) MSA 2; methane, 1-aryl-,1-phenyl-; 1-benzene-carboxylic acid, 2-hydroxy-; benzene,

1-hydroxy-,3-sulfonyl-; MSA 10
a The features are listed in the order of significance (order of PLS weights) for each compound. b All experimental values are taken

from the literature.11,12 c Probability calculated from logistic partial least squares model for compound classification.
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our model. It is also possible that the reported value
might have been an experimental anomaly.

The second case of a prediction outlier is compound
177, an active compound whose pIC50 value was pre-
dicted to be lower (1.19) than the actual value (1.585).
Compound 177 (Chart 2) contains biphenyl derivatives
with sulfonyl-salicylic acid with sulfonyl group meta to
the carboxylic acid. There were several highly similar
structures in the training set, from which the prediction
was based. The structural features that were positively
correlated with activities were oxybiphenyls (MSA 10,
13, 3) and biphenyls connected to sulfonylbenzene or
p-sulfonylbenzoic acid. No negatively correlating MSAs
were found in these similar compounds. As confirmed
in Table 5, MSAs 10 and 13 were among the most
significant features in the model. However, MSA 10 is

not helpful in the local neighborhood of this compound
since every compound has this feature. No MSAs that
were negatively correlated with activity were found in
the training set. On the other hand, compound 177
contains sulfonylsalicylic acid, a potent series of PTP1B

Chart 2. Examples of Structures Used for Chemical Inference

Table 5. Parameter Optimization for Classification Model

training cross-validation

G F

%
concor-
dance

%
sensi-
tivity

%
speci-
ficity

%
concor-
dance

%
sensi-
tivity

%
speci-
ficity

all 150 2 84.8 81.4 87.8 82.6 81.4 83.7
8 94.6 95.9 93.0 75.0 65.1 83.7

all 50 2 83.7 81.4 85.7 82.6 79.1 85.7
8 91.9 88.4 93.9 79.3 74.4 83.7

MSA (50) + 2 89.1 91.8 86 87.0 81.4 91.8
properties 9 95.7 95.3 95.9 83.7 81.4 85.7
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inhibition. In Chart 1, no MSAs containing the sulfo-
nylbenzoic acid feature are included in the model
because of relatively low t-values observed in the feature
preselection step of the model building process. There-
fore, predicting pIC50 lower than the actual can be
explained.

Step 6. Refining Model by Chemical Inference.
As discussed above, some key features may be missed
by the algorithmically reassembling MSAs. New fea-
tures can be designed to test the structure activity
relationship hypothesis and hence refine the model to
improve the prediction accuracy. For example, sulfo-
nylbenzoic acid features can be added to the existing
structural feature predictors. Compound 177 contains
the OH group ortho to the acid, although the sulfonyl
group is meta to the acid. Examining similar compounds
in the training set, salicylic acid (OH group ortho to the
acid) is associated with higher activity than benzoic acid.
In addition, a sulfonyl group para to the carboxylic acid
enhances the activity. This suggests addition of new
macrostructures to capture this relationship consisting
of the sulfobenzene with ortho OH and carboxylic acid
groups. On the basis of this analysis, three additional
features (shown in Chart 1) were then included in the
model. The model was built again by extracting 4 PLS
factors from the 153 structural features. Without chang-
ing the overall goodness of fit, the predicted value for
compound 177 increased from 0.886 to 0.947, somewhat
closer to the experimental value of 1.54. This is a good
example of how chemical inference can be used to guide
the model.

Classification Model. For screening compound ac-
tivities, quite often binary or categorical ranking of
potency or efficacy is sufficient. Compounds with activi-
ties lower than 0.70 (average of the whole 118 set) were
considered inactive. The same 92-training and 26-test
sets were used to develop a classification model based
on partial logistic regression (PLR). In PLR models, the
probability of each compound being active or inactive
is calculated. The overall accuracy and numbers of false
positive and false negative predictions are determined.

A new set of MSAs was extracted from the dataset
using the binary biological response; the resulting set
was very similar to the set based on the pIC50 data. As
before, optimal parameters were selected based on
leave-one-out cross-validation. In all cases, the logistic
model prediction power was best for a small number of
extracted PLS factors (F ) 2). Predictors consisting only
of MSAs and augmented by the same 8 physical proper-
ties gave the best balance of the specificity and sensitiv-
ity. These classification models gave excellent results
with low RMSE, high concordance (overall accuracy),
specificity (true negatives), and sensitivity (true posi-
tives) as illustrated in Table 5.

The model using MSAs and 8 properties was applied
to the 26-test set. Even compounds whose predicted
pIC50 values deviated significantly from experimental
results (compounds 62, 145, and 177) were classified
correctly. When the pIC50 values were close to the
average, classification was not as accurate even though
the predicted pIC50 values were in good agreement with
experimental values. For example, the experimental and
predicted pIC50 values for structures 136 (26-test set)
and 137 (92-training set) were close to the average of

the training. In the logistic model, these two were
incorrectly classified as inactive; however, the prob-
abilities that determined these classifications were close
to 0.5 (0.62 for structure 136, 0.54 for structure 137).
Probabilities near 0.5 for logistic models suggest that
the compound is in the neutral area, having activities
close to the cutoff value used to define actives vs
inactives.

For the 19-unknown test set, a new model was
developed using all 118 compounds (92-training plus 26-
test) as the training set employing MSAs and 8 proper-
ties as predictors. As summarized in Table 6, the
prediction of the activity classes of this true unknown
set was 100% accurate, with the model correctly pre-
dicting compound 135 to be the only active compound
in the 19-unknown set.

Prediction of IC50 for the Unknown Set. The
Malamas paper11 reported only % inhibitions at a
concentration range of 2.5-0.1 µM for the 19-unknown
compound set. The pIC50 model developed here was used
to predict IC50 values and compare with the previously
reported % inhibition and concentration data. As sum-
marized in Table 6, the predicted IC50 values seem
quite reasonable. It is important to note that these
predictions are only speculative and have not been
validated with real experimental assays; however, it
demonstrates how a reliable model can provide direction
and insight into the design of molecules.

Conclusion

An approach for developing predictive models for
chemical activity based on 2-D structural descriptors is
presented. Macrostructure assemblies (MSAs), dynami-
cally constructed from a set of compounds, provide an
intuitive means of reducing the high dimensionality of
feature space and also greatly improve the ability to
perform meaningful chemical inference. Regression
models using partial least squares for continuous re-
sponse data and logistic partial least squares for bino-
mial response data are demonstrated to accurately
predict activity of test set compounds. When building

Table 6. Classification Model of % Inhibition: 19 Compound
Set

activity classcompd
ID % inhibitiona assignedb predicted

proba-
bility

IC50
predicted

53 -51 (2.5 µM) 0 0 0.004 0.78
54 -13 (2.5 µM) 0 0 0.001 1.7
55 -54 (2.5 µM) 0 0 0.003 1.5
59 -27 (2.5 µM) 0 0 0.012 0.56
64 -47 (2.5 µM) 0 0 0.005 0.54
65 -58 (2.5 µM) 0 0 0.018 0.39
69 -38 (0.25 µM) 0 0 0.149 0.22
70 -36 (2.5 µM) 0 0 0.124 0.23
93 -41 (2.5 µM) 0 0 0.047 0.36
94 -19 (1 µM) 0 0 0.056 0.67
101 -59 (1 µM) 0 0 0.031 0.56
102 -43 (1 µM) 0 0 0.125 0.32
135 -59 (0.1 µM) 1 1 0.929 0.080
144 -53 (2.5 µM) 0 0 0.004 2.4
150 -56 (2.5 µM) 0 0 0.005 1.9
154 -11 (2.5 µM) 0 0 0.007 2.0
155 -47 (2.5 µM) 0 0 0.013 1.2
161 -41 (2.5 µM) 0 0 0.001 2.5
173 -41 (2.5 µM) 0 0 0.117 0.72

a % inhibition data were taken from Malamas et al. b Activity
was assigned as described in the Methods section.
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predictive models, preselection of features is important
to avoid overfitting; however, preselection based on
statistical methods may result in the elimination of
important features, especially if the compounds are
within local neighbors of small size. This problem can
be addressed by an iterative model building approach
that allows for the incorporation of additional informa-
tion.

Models are demonstrated to perform as well as 3-D
QSAR models, which are known to be less intuitive in
connecting back to the structural features when design-
ing molecules. 3-D models provide some insights on
molecular connectivity, surface area, and hydrogen
bonding and charges. However, the modeling methodol-
ogy presented here, based on 2-D structural features,
enables an intuitive, quantitative connection of struc-
tural features of medicinal chemistry building blocks to
compound activity. Chemical inference transparent to
structural features enables efficient evaluation of hy-
potheses needed in the design of structures.
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